Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 11(11): 6945-6954, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970423

RESUMO

Social media have emerged as a promising communication channel for promoting breastfeeding among a new generation of mothers. Yet, there is no published study reporting the effects of a large-scale social media intervention on key breastfeeding-related perceptions, attitudes, and behaviors. As a component of its breastfeeding promotion campaign, the Women, Infants, and Children (WIC) program implemented a 12-month intervention using Facebook and Instagram and subsequently evaluated the outcomes by surveying WIC-participating women (N = 832) twice, immediately before and after the intervention. Based on their level of exposure to the intervention messages, the women were retrospectively classified into two groups, resulting in a two-group (no-low exposure vs. medium-high exposure) quasi-experiment. Women in the medium-high exposure group, in comparison with women in the no-low exposure group, exhibited higher campaign awareness (p < .001), visits to the campaign website (p < .001), and engagement with the website content (p < .001). They also reported more positive breastfeeding attitudes (M = 17.26 vs. M = 16.51, p < .05), self-efficacy (M = 54.48 vs. M = 49.94, p < .01), and social support (M = 27.37 vs. M = 25.11, p < .001). But they did not differ from women in the no-low exposure group in breastfeeding initiation (p > .05) and duration (p > .05). In conclusion, a social media-based intervention resulted in more positive breastfeeding attitudes, higher self-efficacy, and higher perceived social support. Future studies need to investigate the optimal level of intervention message dosage that prompts significant behavioral changes.

2.
Front Microbiol ; 14: 1293149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029200

RESUMO

Antibiotic-induced gut microbiota disruption constitutes a major risk factor for Clostridioides difficile infection (CDI). Further, antibiotic therapy, which is the standard treatment option for CDI, exacerbates gut microbiota imbalance, thereby causing high recurrent CDI incidence. Consequently, probiotic-based CDI treatment has emerged as a long-term management and preventive option. However, the mechanisms underlying the therapeutic effects of probiotics for CDI remain uninvestigated, thereby creating a knowledge gap that needs to be addressed. To fill this gap, we used a multiomics approach to holistically investigate the mechanisms underlying the therapeutic effects of probiotics for CDI at a molecular level. We first screened Bifidobacterium longum owing to its inhibitory effect on C. difficile growth, then observed the physiological changes associated with the inhibition of C. difficile growth and toxin production via a multiomics approach. Regarding the mechanism underlying C. difficile growth inhibition, we detected a decrease in intracellular adenosine triphosphate (ATP) synthesis due to B. longum-produced lactate and a subsequent decrease in (deoxy)ribonucleoside triphosphate synthesis. Via the differential regulation of proteins involved in translation and protein quality control, we identified B. longum-induced proteinaceous stress. Finally, we found that B. longum suppressed the toxin production of C. difficile by replenishing proline consumed by it. Overall, the findings of the present study expand our understanding of the mechanisms by which probiotics inhibit C. difficile growth and contribute to the development of live biotherapeutic products based on molecular mechanisms for treating CDI.

3.
Front Immunol ; 14: 1126392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033973

RESUMO

Because of the rapid mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective vaccine against SARS-CoV-2 variants is needed to prevent coronavirus disease 2019 (COVID-19). T cells, in addition to neutralizing antibodies, are an important component of naturally acquired protective immunity, and a number of studies have shown that T cells induced by natural infection or vaccination contribute significantly to protection against several viral infections including SARS-CoV-2. However, it has never been tested whether a T cell-inducing vaccine can provide significant protection against SARS-CoV-2 infection in the absence of preexisting antibodies. In this study, we designed and evaluated lipid nanoparticle (LNP) formulated mRNA vaccines that induce only T cell responses or both T cell and neutralizing antibody responses by using two mRNAs. One mRNA encodes SARS-CoV-2 Omicron Spike protein in prefusion conformation for induction of neutralizing antibodies. The other mRNA encodes over one hundred T cell epitopes (multi-T cell epitope or MTE) derived from non-Spike but conserved regions of the SARS-CoV-2. We show immunization with MTE mRNA alone protected mice from lethal challenge with the SARS-CoV-2 Delta variant or a mouse-adapted virus MA30. Immunization with both mRNAs induced the best protection with the lowest viral titer in the lung. These results demonstrate that induction of T cell responses, in the absence of preexisting antibodies, is sufficient to confer protection against severe disease, and that a vaccine containing mRNAs encoding both the Spike and MTE could be further developed as a universal SARS-CoV-2 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Epitopos de Linfócito T , RNA Mensageiro/genética
4.
Medicine (Baltimore) ; 101(39): e30773, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36181010

RESUMO

INTRODUCTION: This study aimed to propose a protocol to demonstrate the efficacy of Codonopsis lanceolata water extract for the improvement of skeletal muscle mass (SMM) and function (muscle strength or performance function) and its safety compared to a placebo in adults with reduced muscle strength. METHODS AND ANALYSIS: A randomized double-blind placebo-controlled clinical trial was conducted. Participants will be recruited from the Korean Medicine Hospital in South Korea. One hundred and four adults with reduced muscle strength will be randomly assigned a 1:1 ratio to either the experimental or placebo comparator groups. The participants will consume the product corresponding to their assigned group for the following 12 weeks, and efficacy and safety tests will be conducted. This is the first clinical trial of C lanceolata water extract in adults with reduced muscle strength. The results of this study would provide a clinical basis for the efficacy and safety of C lanceolata water extract in patients with sarcopenia. ETHICS AND DISSEMINATION: This trial was approved by the Institutional Review Board (IRB) of Kyung Hee University Korean Medicine Hospital at Gangdong on July 15, 2021 (amendment number: MLB_DDE_H01 [ver. 01]). When a change was made in the clinical trial plan, the IRB reviewed and approved the revised clinical trial plan. The study was registered on the Clinical Research Information Service website on December 3, 2021 (registration number: PRE20211203-003; https://cris.nih.go.kr/cris/search/detailSearch.do?seq=20841&status=1&seq_group=20841&search_page=M). The results of this clinical trial will be reported in the future. Every document related to the clinical trial, such as the electronic case report form, will be recorded and classified by the subject identification code and not by the subject name.


Assuntos
Codonopsis , Sarcopenia , Adulto , Humanos , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Água
5.
Front Bioeng Biotechnol ; 10: 971739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118584

RESUMO

Clostridioides difficile is a gram-positive anaerobic bacterium that causes antibiotic-associated infections in the gut. C. difficile infection develops in the intestine of a host with an imbalance of the intestinal microbiota and, in severe cases, can lead to toxic megacolon, intestinal perforation, and even death. Despite its severity and importance, however, the lack of a model to understand host-pathogen interactions and the lack of research results on host cell effects and response mechanisms under C. difficile infection remain limited. Here, we developed an in vitro anaerobic-aerobic C. difficile infection model that enables direct interaction between human gut epithelial cells and C. difficile through the Mimetic Intestinal Host-Microbe Interaction Coculture System. Additionally, an integrative multiomics approach was applied to investigate the biological changes and response mechanisms of host cells caused by C. difficile in the early stage of infection. The C. difficile infection model was validated through the induction of disaggregation of the actin filaments and disruption of the intestinal epithelial barrier as the toxin-mediated phenotypes following infection progression. In addition, an upregulation of stress-induced chaperones and an increase in the ubiquitin proteasomal pathway were identified in response to protein stress that occurred in the early stage of infection, and downregulation of proteins contained in the electron transfer chain and ATP synthase was observed. It has been demonstrated that host cell energy metabolism is inhibited through the glycolysis of Caco-2 cells and the reduction of metabolites belonging to the TCA cycle. Taken together, our C. difficile infection model suggests a new biological response pathway in the host cell induced by C. difficile during the early stage of infection at the molecular level under anaerobic-aerobic conditions. Therefore, this study has the potential to be applied to the development of future therapeutics through basic metabolic studies of C. difficile infection.

6.
Front Bioeng Biotechnol ; 10: 825399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252133

RESUMO

Faecalibacterium prausnitzii, a major commensal bacterium in the human gut, is well known for its anti-inflammatory effects, which improve host intestinal health. Although several studies have reported that inulin, a well-known prebiotic, increases the abundance of F. prausnitzii in the intestine, the mechanism underlying this effect remains unclear. In this study, we applied liquid chromatography tandem mass spectrometry (LC-MS/MS)-based multiomics approaches to identify biological and enzymatic mechanisms of F. prausnitzii involved in the selective digestion of inulin. First, to determine the preference for dietary carbohydrates, we compared the growth of F. prausnitzii in several carbon sources and observed selective growth in inulin. In addition, an LC-MS/MS-based intracellular proteomic and metabolic profiling was performed to determine the quantitative changes in specific proteins and metabolites of F. prausnitzii when grown on inulin. Interestingly, proteomic analysis revealed that the putative proteins involved in inulin-type fructan utilization by F. prausnitzii, particularly ß-fructosidase and amylosucrase were upregulated in the presence of inulin. To investigate the function of these proteins, we overexpressed bfrA and ams, genes encoding ß-fructosidase and amylosucrase, respectively, in Escherichia coli, and observed their ability to degrade fructan. In addition, the enzyme activity assay demonstrated that intracellular fructan hydrolases degrade the inulin-type fructans taken up by fructan ATP-binding cassette transporters. Furthermore, we showed that the fructose uptake activity of F. prausnitzii was enhanced by the fructose phosphotransferase system transporter when inulin was used as a carbon source. Intracellular metabolomic analysis indicated that F. prausnitzii could use fructose, the product of inulin-type fructan degradation, as an energy source for inulin utilization. Taken together, this study provided molecular insights regarding the metabolism of F. prauznitzii for inulin, which stimulates the growth and activity of the beneficial bacterium in the intestine.

7.
Biotechnol J ; 17(2): e2100397, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34894414

RESUMO

The cellular components of Akkermansia muciniphila are considered potential biotherapeutics for the improvement of obesity, diabetes, and metabolic diseases. However, the molecular-based mechanism of A. muciniphila for treatment of obesity, which can provide important evidence for human research, has rarely been explored. Here, we applied integrative multiomics approaches to investigate the underlying molecular mechanism involved in obesity treatment by A. muciniphila. First, the treatment with a cell lysate of A. muciniphila reduced lipid accumulation in 3T3-L1 cells and downregulated the mRNA expression of proteins involved in adipogenesis and lipogenesis. Our proteomic results revealed that A. muciniphila decreased the expression of proteins involved in fat cell differentiation, fatty acid metabolism, and energy metabolism in adipocytes. Moreover, A. muciniphila significantly reduced the level of metabolites related to glycolysis, the TCA cycle, and ATP in adipocytes. Interestingly, serine protease inhibitor A3 (SERPINA3) homologs were overexpressed in the 3T3-L1 cells treated with A. muciniphila. Small interfering RNA (siRNA) transfection demonstrated that A. muciniphila upregulates SERPINA3G expression and inhibits lipogenesis in adipocytes. Taken together, our multiomics-based approaches enabled to uncover the molecular mechanism of A. muciniphila for treatment of obesity and provide potent anti-lipogenic agents.


Assuntos
Adipogenia , Lipogênese , Adipócitos , Adipogenia/genética , Akkermansia , Humanos , Proteômica
8.
Biotechnol Bioeng ; 118(4): 1612-1623, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421096

RESUMO

The commensal gut bacterium Akkermansia muciniphila is well known as a promising probiotic candidate that improves host health and prevents diseases. However, the biological interaction of A. muciniphila with human gut epithelial cells has rarely been explored for use in biotherapeutics. Here, we developed an in vitro device that simulates the gut epithelium to elucidate the biological effects of living A. muciniphila via multiomics analysis: the Mimetic Intestinal Host-Microbe Interaction Coculture System (MIMICS). We demonstrated that both human intestinal epithelial cells (Caco-2) and the anaerobic bacterium A. muciniphila can remain viable for 12 h after coculture in the MIMICS. The transcriptomic and proteomic changes (cell-cell junctions, immune responses, and mucin secretion) in gut epithelial cells treated with A. muciniphila closely correspond with those reported in previous in vivo studies. In addition, our proteomic and metabolomic results revealed that A. muciniphila activates glucose and lipid metabolism in gut epithelial cells, leading to an increase in ATP production. This study suggests that A. muciniphila improves metabolism for ATP production in gut epithelial cells and that the MIMICS may be an effective general tool for evaluating the effects of anaerobic bacteria on gut epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Akkermansia/crescimento & desenvolvimento , Células CACO-2 , Técnicas de Cocultura , Humanos
9.
Stem Cell Rev Rep ; 16(3): 596-611, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32112264

RESUMO

Osteoarthritis (OA) is a general joint disease. Cartilage damage is associated with a decrease in the density of chondrocytes. Mesenchymal stem cells (MSCs) differentiate into adipocytes, osteocytes and chondrocytes, and are an excellent source of cell therapy. Cartilage-derived extracellular matrix (ECM) promotes chondrogenesis of MSCs. However, the role of MSCs stimulated by ECM is not well known in OA. The purpose of this study is to determine the role of specific factors generated by the application of ECM and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in managing OA symptoms. Cartilage acellular matrix (CAM), which is a cartilage-derived ECM, was used to promote the chondrogenesis of UCB-MSCs. Induced MSCs were analyzed using chondrogenic markers (aggrecan, collagen type 2, and SOX9) and bone morphogenic protein 6 (BMP6). BMP6 is known to be involved in early chondrogenesis of MSCs. As a result, treatment with CAM significantly increased the expression of chondrogenic markers and BMP6 in UCB-MSCs. Treatment with recombinant human BMP6 also dramatically increased the levels of chondrogenic markers in UCB-MSCs. In addition, UCB-MSCs and CAM were used to evaluate OA symptom improvement in a rabbit articular cruciate ligament transection (ACLT) model. Application of UCB-MSCs and CAM enhanced not only the structure and synthesis of proteoglycan and collagen type 2 but also anti-inflammatory effects in both rabbit joint and synovial fluid. Moreover, the detection of human cells and involvement of BMP6 were confirmed in rabbit cartilage tissues. This study indicates that therapeutic potential of UCB-MSCs with CAM is mediated via BMP6 in OA.


Assuntos
Lesões do Ligamento Cruzado Anterior/terapia , Proteína Morfogenética Óssea 6/farmacologia , Cartilagem Articular/patologia , Matriz Extracelular/metabolismo , Sangue Fetal/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/patologia , Comportamento Animal , Rastreamento de Células , Condrogênese , Modelos Animais de Doenças , Humanos , Osteoartrite/patologia , Comunicação Parácrina , Coelhos , Líquido Sinovial/metabolismo
10.
RSC Adv ; 10(46): 27864-27873, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35516943

RESUMO

As demands for new antibiotics and strategies to control methicillin-resistant Staphylococcus aureus (MRSA) increase, there have been efforts to obtain more accurate and abundant information about the mechanism of the bacterial responses to antibiotics. However, most of the previous studies have investigated responses to antibiotics without considering the genetic differences between MRSA and methicillin-susceptible S. aureus (MSSA). Here, we initially applied a multi-omics approach into the clinical isolates (i.e., S. aureus WKZ-1 (MSSA) and S. aureus WKZ-2 (MRSA)) that are isogenic except for the mobile genetic element called staphylococcal cassette chromosome mec (SCCmec) type IV to explore the response to ß-lactam antibiotics (oxacillin). First, the isogenic pair showed a similar metabolism without oxacillin treatment. The quantitative proteomics demonstrated that proteins involved in peptidoglycan biosynthesis (MurZ, PBP2, SgtB, PrsA), two-component systems (VrsSR, WalR, SaeSR, AgrA), oxidative stress (MsrA1, MsrB), and stringent response (RelQ) were differentially regulated after the oxacillin treatment of the isogenic isolates. In addition, targeted metabolic profiling showed that metabolites belonging to the building blocks (lysine, glutamine, acetyl-CoA, UTP) of peptidoglycan biosynthesis machinery were specifically decreased in the oxacillin-treated MRSA. These results indicate that the difference in metabolism of this isogenic pair with oxacillin treatment could be caused only by SCCmec type IV. Understanding and investigating the antibiotic response at the molecular level can, therefore, provide insight into drug resistance mechanisms and new opportunities for antibiotics development.

11.
RSC Adv ; 10(40): 23792-23800, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517354

RESUMO

The halophilic bacterium Pseudoalteromonas phenolica is well known as a promising candidate that enables the recycling of organic wastes at high salinity. However, for industrial applications of P. phenolica further research is required to explore the biological mechanism for maximizing the activities and productivities of this bacterium. In this study, we investigated the osmotic stress resistance and specific protease activities of P. phenolica in a normal-salt medium (0.3 M NaCl) and high-salt medium (1 M NaCl) based on intra- and extracellular multi-omics approaches. Proteins related to betaine and proline biosynthesis were increased under high salt stress. The targeted metabolite analysis found that proline was overproduced and accumulated outside the cell at high salinity, and betaine was accumulated in the cell by activation of biosynthesis as well as uptake. In addition, extracellular serine proteases were shown to be upregulated in response to salt stress by the extracellular proteomic analysis. The specific proteolytic activity assay indicated that the activities of serine proteases, useful enzymes for the recycling of organic wastes, were increased remarkably under high salt stress. Our results suggest that betaine and proline are key osmoprotectant metabolites of P. phenolica, and they can be used for the improvement of protease production and P. phenolica activities for the recycling of high-salt organic wastes in the future.

12.
J Agric Food Chem ; 67(35): 9796-9804, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31393712

RESUMO

Overactivated microglia and persistent neuroinflammation hold an important role in the pathophysiology of neurodegenerative diseases. The extract of Lycoris chejuensis (CJ) and its active compound, 7-deoxy-trans-dihydronarciclasine (named E144), attenuated expressions of pro-inflammatory factors, including nitric oxide, prostaglandin E2, inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), and interleukin 6, secreted by lipopolysaccharide-activated BV-2 microglial cells, as measured by an enzyme-linked immunosorbent assay or western blotting. In contrast, CJ extract and E144 promoted the secretion of the anti-inflammatory cytokine, interleukin 10. Moreover, we found that E144 attenuated the expression of TNF-α and COX-2 in the cerebral cortex of lipopolysaccharide-treated mice and/or T2576 transgenic mice as well as reduced the reactive immune cells visualized by ionized calcium-binding adaptor molecule 1. Our results suggest the possibility of E144 to serve as a potential anti-neuroinflammatory agent by preventing excess production of pro-inflammatory factors.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/imunologia , Isoquinolinas/administração & dosagem , Lycoris/química , Extratos Vegetais/administração & dosagem , Doença de Alzheimer/genética , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Modelos Animais de Doenças , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Isoquinolinas/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia , Extratos Vegetais/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
13.
J Tissue Eng Regen Med ; 13(7): 1134-1142, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959558

RESUMO

Rheumatoid arthritis (RA) is a common inflammatory chronic disease. It has been reported that mesenchymal stem cells (MSCs) have the effect of immune suppression in collagen-induced arthritis (CIA) mice model. However, the in vivo therapeutic effect from the long-interval repeated intravenous administration of human umbilical cord blood-derived (hUCB)-MSCs had not been investigated in CIA mice model. This study was undertaken to investigate the effects of long-interval repeated intravenous administration of hUCB-MSCs at different doses in CIA mice model. Mice were intravenously injected with three different doses of hUCB-MSCs once every 2 weeks for three times. RA severity was assessed by clinical joint score and histologic analysis including hematoxylin and eosin staining, safranin-O staining, and toluidine blue staining. We used real-time polymerase chain reaction and flow cytometry to quantify differences in inflammatory cytokines and Tregs. Mice treated with hUCB-MSCs showed significant improvement in clinical joint score. Histologic analysis revealed that hUCB-MSCs definitely reduced joint inflammation, cartilage damage, and formation of pannus in multimedium and multihigh groups. These hUCB-MSCs also significantly decreased IL-1 beta protein levels in multimedium and multihigh groups and IL-6 protein levels in all hUCB-MSCs-treated groups. Furthermore, mRNA levels of IL-1 beta and IL-6 were decreased significantly in all hUCB-MSCs-treated groups, whereas the expression of anti-inflammatory cytokine IL-10 was increased in the multihigh group. Tregs known as suppressor T cells were also significantly increased in the multihigh group. Our findings suggest that long-interval repeated intravenous administration of hUCB-MSCs has therapeutic effects by improving symptoms of RA in CIA mice model in a dose-dependent manner.


Assuntos
Artrite Experimental , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Administração Intravenosa , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/terapia , Feminino , Xenoenxertos , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos DBA , Fatores de Tempo , Cordão Umbilical/patologia
14.
Sci Rep ; 8(1): 13255, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185973

RESUMO

Recently there has been a growing interest in three-dimensional (3D) cell culture systems for drug discovery and development. These 3D culture systems better represent the in vivo cellular environment compared to two-dimensional (2D) cell culture, thereby providing more physiologically reliable information on drug screening and testing. Here we present the quantitative profiling of a drug-induced proteome in 2D- and 3D-cultured colorectal cancer SW480 cells using 2D nanoflow liquid chromatography-tandem mass spectrometry (2D-nLC-MS/MS) integrated with isobaric tags for relative and absolute quantitation (iTRAQ). We identified a total of 4854 shared proteins between 2D- and 3D-cultured SW480 cells and 136/247 differentially expressed proteins (up/down-regulated in 3D compared to 2D). These up/down-regulated proteins were mainly involved in energy metabolism, cell growth, and cell-cell interactions. We also investigated the XAV939 (tankyrase inhibitor)-induced proteome to reveal factors involved in the 3D culture-selective growth inhibitory effect of XAV939 on SW480 cells. We identified novel XAV939-induced proteins, including gelsolin (a possible tumor suppressor) and lactate dehydrogenase A (a key enzyme of glycolysis), which were differentially expressed between 2D- and 3D-cultured SW480 cells. These results provide a promising informative protein dataset to determine the effect of XAV939 on the expression levels of proteins involved in SW480 cell growth.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteômica/métodos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Gelsolina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Proteoma/efeitos dos fármacos , Esferoides Celulares
15.
Int J Mol Med ; 40(6): 1860-1868, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039467

RESUMO

Human bone marrow­derived mesenchymal stem cells (hMSCs) are a desirable cell source for cell­based therapy to treat nervous system injuries due to their ability to differentiate into specific cell types. In addition to their multipotency, hMSCs render the tissue microenvironment more favorable for tissue repair by secreting various growth factors. Our previous study demonstrated that hMSCs secrete several growth factors, including several insulin­like growth factor binding proteins (IGFBPs). Among these, IGFBP­6 binds with high affinity and inhibits insulin growth factor­2 (IGF­2) to inhibit the growth of IGF­2­dependent tumors. However, the function of IGFBP­6 in the nervous system remains to be fully elucidated. The present study investigated the protective effects of IGFBP­6 secreted by hMSCs on H2O2­injured primary cortical neuron cultures and lysolecithin­injured organotypic spinal cord slice cultures. Treatment of the H2O2­injured cortical neurons with conditioned media from hMSCs (hMSC­CM) increased the phosphorylation of Akt, reduced cell death and mitochondrial translocation of Bax, and regulated extracellular levels of IGF­1 and IGF­2. MTT assay, western blot analysis and ELISA were used to detect the cell viability and protein expression levels, respectively. An inhibitory antibody against IGFBP­6 eliminated this hMSC­CM­mediated neuroprotective effect in the injured cortical neuron cultures and spinal cord slice cultures. In addition, treatment with cyclolignan picropodophyllin, an inhibitor of IGF­1 receptor (IGF­1R), significantly inhibited neuronal protection by hMSC­CM. These findings demonstrated that hMSC­CM­mediated neuroprotection was attributed to IGF­1R­mediated signaling, potentiated via the inhibition of IGF­2 by IGFBP­6. The results of the present study provide insight into the mechanism by which hMSC administration may promote recovery from nerve injury.


Assuntos
Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like II/genética , Células-Tronco Mesenquimais/metabolismo , Neuroproteção/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Meios de Cultivo Condicionados/farmacologia , Expressão Gênica/genética , Humanos , Peróxido de Hidrogênio/toxicidade , Lisofosfatidilcolinas/toxicidade , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Podofilotoxina/administração & dosagem , Podofilotoxina/análogos & derivados , Cultura Primária de Células , Receptor IGF Tipo 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo
16.
Int J Mol Med ; 38(4): 1075-82, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27498709

RESUMO

Human mesenchymal stem cells (hMSCs) have great therapeutic potential due to their high plasticity, immune privileged status and ease of preparation, as well as a lack of ethical barriers to their use. However, their ultimate usefulness is limited by cellular senescence occurring secondary to increased cellular levels of reactive oxygen species (ROS) during their propagation in culture. The underlying molecular mechanisms responsible for this process in hMSCs remain unclear. An antioxidant polyphenol epigallocatechin-3-gallate (EGCG) found in green tea, is known to activate nuclear factor-erythroid 2-related factor 2 (Nrf2), a master transcriptional regulator of antioxidant genes. Herein, we examined the EGCG-mediated antioxidant mechanism in hMSCs exposed to ROS which involves Nrf2 activation. The H2O2-exposed hMSCs showed cellular senescence with significantly increased protein levels of acetyl-p53 and p21 in comparison with the untreated hMSCs, and these effects were prevented by pre-treatment with EGCG. By contrast, in Nrf2-knockdown hMSCs, EGCG lost its antioxidant effect, exhibiting high levels of acetyl-p53 and p21 following EGCG pre-treatment and H2O2 exposure. This indicates that Nrf2 and p53/p21 may be involved in the anti­senescent effect of EGCG in hMSCs. Taken together, these findings indicate the important role of EGCG in preventing oxidative stress-induced cellular senescence in hMSCs through Nrf2 activation, which has applications for the massive production of more suitable hMSCs for cell-based therapy.


Assuntos
Catequina/análogos & derivados , Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Estresse Oxidativo/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Adulto , Catequina/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
17.
Can J Physiol Pharmacol ; 94(1): 104-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27123496

RESUMO

Cistanche salsa has been used in traditional medicine for the treatment of kidney deficiency, neurasthenia, sexual dysfunction diseases, and benign prostatic hyperplasia (BPH). The aim of this study was to investigate the mechanism by which C. salsa extract (CSE) elicits an anti-proliferative effect on the prostate tissue of BPH-induced rats. The effects of CSE on BPH were evaluated in terms of prostate weight, production of serum dihydrotestosterone (DHT), and the mRNA expression of 5α-reductase type 1 and type 2 in the prostate tissue of BPH-induced rats. In addition, hematoxylin and eosin (H&E) staining was performed for histological examination of prostate gland morphology, and protein expression levels in prostate tissue were investigated by western blot analysis. CSE treatment decreased prostate weight, serum DHT concentration, and the mRNA expression of 5α-reductase type 1 and type 2 in prostate tissue of BPH-induced rats. In addition, CSE treatment suppressed cell proliferation by regulating the expression levels of inflammatory-related proteins (inducible nitric oxide synthase and cyclooxygenase 2) and apoptosis-associated proteins (caspase-3 and Bcl-2 family proteins). CSE may be a potential therapeutic candidate for BPH owing to its ability to regulate the expression of inflammatory and apoptosis-related proteins.


Assuntos
Cistanche , Fitoterapia , Extratos Vegetais/farmacologia , Hiperplasia Prostática/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Di-Hidrotestosterona/sangue , Progressão da Doença , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Plantas Medicinais , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Ratos , Ratos Sprague-Dawley
18.
Tissue Eng Regen Med ; 13(5): 601-609, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30603441

RESUMO

Enhancing adult nerve regeneration is a potential therapeutic strategy for treating spinal cord injury. Vascular endothelial growth factor (VEGF) is a major contributor to angiogenesis, which can reduce the spinal cord injury by inhibiting the inflammation and improve recovery after spinal cord injury. We have previously demonstrated that exogenous VEGF has neurotrophic effects on injured spinal nerves in organotypic spinal cord slice cultures. However, the mechanisms underlying the neurite growth by exogenous VEGF remain to be explored in spinal cord. In this study, we found out that exogenous VEGF mediated axonal outgrowth through VEGF receptor 1 (VEGFR1) and VEGFR2, both of which were expressed on organotypic spinal cord slices. Although VEGFR1 and VEGFR2 were constitutively expressed in some cells of control spinal cord slices, VEGF treatment upregulated expression of VEGFR1 and VEGFR2. Both VEGFR1 and VEGFR2 were expressed in neuronal cells as well as glial cells of organotypic spinal cord slices. We also observed that VEGF-induced axonal outgrowth was attenuated by a specific mitogen-activated protein kinase (MAPK) inhibitor PD98059 and a specific phosphoinositide 3-kinase (PI3K) inhibitor wortmannin. Thus, these findings suggest that these MAPK and PI3K pathways have important roles in regulating VEGF-induced axonal outgrowth in the postnatal spinal cord.

19.
Restor Dent Endod ; 40(2): 123-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25984473

RESUMO

OBJECTIVES: Glide path preparation is recommended to reduce torsional failure of nickel-titanium (NiTi) rotary instruments and to prevent root canal transportation. This study evaluated whether the repetitive insertions of G-files to the working length maintain the apical size as well as provide sufficient lumen as a glide path for subsequent instrumentation. MATERIALS AND METHODS: The G-file system (Micro-Mega) composed of G1 and G2 files for glide path preparation was used with the J-shaped, simulated resin canals. After inserting a G1 file twice, a G2 file was inserted to the working length 1, 4, 7, or 10 times for four each experimental group, respectively (n = 10). Then the canals were cleaned by copious irrigation, and lubricated with a separating gel medium. Canal replicas were made using silicone impression material, and the diameter of the replicas was measured at working length (D0) and 1 mm level (D1) under a scanning electron microscope. Data was analysed by one-way ANOVA and post-hoc tests (p = 0.05). RESULTS: The diameter at D0 level did not show any significant difference between the 1, 2, 4, and 10 times of repetitive pecking insertions of G2 files at working length. However, 10 times of pecking motion with G2 file resulted in significantly larger canal diameter at D1 (p < 0.05). CONCLUSIONS: Under the limitations of this study, the repetitive insertion of a G2 file up to 10 times at working length created an adequate lumen for subsequent apical shaping with other rotary files bigger than International Organization for Standardization (ISO) size 20, without apical transportation at D0 level.

20.
Arch Pharm Res ; 38(5): 642-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25070763

RESUMO

We evaluated the effect of SKI3246, the 50% ethanol extract of the rhizome of Atractylodes japonica, on visceral hypersensitivity, which is a major characteristic feature of IBS. We used various rat models of visceral hypersensitivity to assess the visceral pain responses to colorectal distension (CRD) in comparison with conventional IBS treatments. Oral administration of SKI3246 dose-dependently and significantly attenuated the abdominal withdrawal reflex (AWR) score in a model of acetic acid-induced visceral hypersensitivity. We also found that it reduced the number of abdominal contractions in response to CRD in a model of 2,4,6-trinitrobenzenesulfonic acid-induced visceral hypersensitivity, which was comparable to ramosetron or alosetron. Furthermore, treatment with SKI3246 also increased the pain threshold and abolished the elevated AWR scores to CRD in a rat model of neonatal maternal separation. We presumed that the modulation of the NK2 receptor is involved in the inhibitory activity of SKI3246 on the basis that it significantly inhibited the contraction of the distal colonic muscle induced by neurokinin A, the NK2 receptor agonist. The present results indicate that SKI3246 has the potential to be an effective therapeutic agent for IBS, especially insofar as it can relieve visceral hypersensitivity.


Assuntos
Atractylodes , Modelos Animais de Doenças , Síndrome do Intestino Irritável/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Rizoma , Dor Visceral/tratamento farmacológico , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Colo/efeitos dos fármacos , Colo/patologia , Síndrome do Intestino Irritável/patologia , Masculino , Técnicas de Cultura de Órgãos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Dor Visceral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...